Las principales ideas que apuntalan el cálculo se desarrollaron durante un periodo de tiempo muy largo sin duda. Los primeros pasos fueron dados por los matemáticos griegos. Para los antiguos griegos, los números eran cocientes de enteros así que la recta numérica tenía 'hoyos' en ella. Le dieron la vuelta a esta dificultad usando longitudes, áreas y volúmenes además de números ya que, para los griegos, no todas las longitudes eran números.
• Zenón de Elea, alrededor de 450 a. C., planteó una serie de problemas que estaban basados en el infinito.
• Leucippo, Demócrito y Antifon hicieron contribuciones al método exhaustivo griego al que Eudoxo dio una base científica alrededor de 370 a. C. El método se llama exhaustivo ya que considera las áreas medidas como expandiéndolas de tal manera que cubran más y más del área requerida.
• Sin embargo, Arquímedes, alrededor de 225 a. C. hizo uno de las contribuciones griegas más significativas. Su primer avance importante fue demostrar que el área de un segmento de parábola es 4/3 del área del triángulo con los mismos base y vértice y es igual a 2/3 del área del paralelogramo circunscrito.
• No hubo más progresos hasta el siglo XVI cuando la mecánica empezó a llevar a los matemáticos a examinar problemas como el de los centros de gravedad. Luca Valerio (1552-1618) publicó De quadratura parabolae en Roma (1606) que continuaba los métodos griegos para atacar este tipo de problemas de calcular áreas. Kepler, en su trabajo sobre movimientos planetarios, tenía que encontrar el área de sectores de una elipse.
• Tres matemáticos, nacidos en un periodo de tres años, fueron los siguientes en hacer contribuciones importantes. Eran Fermat, Roberval y Cavalieri. Este último llegó a su 'método de los indivisibles' por los intentos de integración de Kepler. No fue riguroso en su acercamiento y es difícil ver con claridad cómo se le ocurrió su método. Al parecer Cavalieri pensó en un área como formada por componentes que eran líneas y luego sumó su número infinito de 'indivisibles'. Demostró, usando estos métodos, que la integral de xn entre 0 y a era an+1/(n+1) mostrando el resultado para ciertos valores de n e infiriendo el resultado general.
• Descartes produjo un importante método para deteminar normales en La Géometrie en 1637 basado en la doble intersección.
• Huygens criticó las pruebas de Cavalieri diciendo que lo que se necesita es una demostración que al menos convenza de que puede construirse una prueba rigurosa. Huygens tuvo gran influencia sobre Leibniz y por lo tanto jugó un papel importante en la producción de un acercamiento más satisfactorio al cálculo.
• El siguiente paso importante lo dieron Torricelli y Barrow. El segundo dio un método de tangentes a una curva en el que la tangente está dada como el límite de una cuerda cuando los puntos se acercan uno a otro y que es conocido como el triángulo diferencial de Barrow.
• El trabajo de Torricelli fue continuado en Italia por Mengoli y Angeli.
Newton escribió un tratado sobre fluxiones en octubre de 1666. Esta obra no sería publicada en ese momento pero fue revisada por muchos matemáticos y tuvo gran influencia sobre la dirección que tomaría el cálculo.
• En su tratado de 1666, Newton discute el problema inverso: encontrar y dada la relación entre x y y'/x'. Por lo tanto la pendiente de la tangente estaba dada para cada x y cuando y'/x' = ƒ(x) entonces Newton resuelve el problema mediante la antidiferenciación. También calculó áreas mediante este método y su obra contiene el primer enunciado claro del Teorema Fundamental del Cálculo.
• Newton tuvo problemas para publicar su obra matemática. Barrow tuvo algo de culpa ya que el editor de la obra de Barrow había quebrado y después de esto ¡otros tenían temor de publicar obras matemáticas! La obra de Newton sobre Análisis con series infinitas fue escrita en 1669.
• Se modo similar, su Método de fluxiones y series infinitas fue escrito en 1671 y publicado en inglés en 1736.
• Aquí se pueden ver la Newton fue el Tractatus de Quadrarura Curvarum que escribió en 1693 pero no fue publicado hasta 1704 cuando la publicó como un apéndice de su Optiks. Su trabajo contiene otro acercamiento que involucra el cálculo de límites.
•
Leibniz aprendió mucho en un viaje por Europa en el que conoció a Huygens en París en 1672. También conoció a Hooke y a Boyle en Londres en 1673
• Leibniz estaba bien consciente de que encontrar una buena notación era sumamente importante y pensó en ella mucho tiempo. Newton, por otro lado, escribió más bien para él mismo y, como consecuencia, tendía a usar cualquier notación que se lo ocurriera ese día. La notación d y ∫ de Leibniz destacaban el aspecto de operadores que probaría ser importante más adelante. Para 1675, Leibniz se había quedado con la notación.
• Sus resultados sobre cálculo integral fueron publicados en 1864 y 1686 con el nombre de calculus summatorius; el término 'cálculo integral' fue sugerido por Jacobo Bernoulli en 1690.
• Después de Newton y Leibniz, el desarrollo del cálculo fue continuado por Jacobo Bernoulli y Johann Bernoulli. Sin embargo, cuando Berkeley publicó su Analyst en 1734 atacando la falta de rigor en el cálculo y disputando la lógica sobre la que se basaba.
• se hicieron grandes esfuerzos para amarrar el razonamiento. Maclaurin intentó poner el cálculo sobre una base geométrica rigurosa pero sus fundamentos realmente satisfactorios tendrían que esperar al trabajo de Cauchy en el siglo XIX.
• Durante el siglo XIX y XX
El desarrollo científico y la creación de modelos teóricos fundados en sistemas de cálculo aplicables tanto en mecánica como en electromagnetismo y radioactividad, etc. así como en astronomía fue impresionante; En la segunda mitad del siglo XIX y primer tercio del XX, a partir del intento de formalización de todo el sistema matemático, Frege, y de matematización de la lógica, (Bolzano, Boole, Whitehead, Russell) fue posible la generalización del concepto como cálculo lógico.
• Actualidad
En la actualidad, el cálculo en su sentido más general, en tanto que cálculo lógico interpretado matemáticamente como sistema binario, y físicamente hecho material mediante la lógica de circuitos eléctrónicos, ha adquirido una dimensión y desarrollo impresionante por la potencia de cálculo conseguida por los ordenadores, propiamente máquinas computadoras. La capacidad y velocidad de cálculo de estas máquinas hace lo que humanamente sería imposible: millones de operaciones; El cálculo así utilizado se convierte en un instrumento fundamental de la investigación científica por las posibilidades que ofrece para la modelización de las teorías científicas, adquiriendo especial relevancia en ello el cálculo numérico.
•
viernes, 16 de abril de 2010
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario